Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces

نویسندگان

  • Takahiro Misawa
  • Yusuke Nomura
  • Silke Biermann
  • Masatoshi Imada
چکیده

Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2-x Sr x CuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fundamental constraints for the mechanism of superconductivity in cuprates

Considerable progress has been made over the last decade in understanding the phenomenological properties of the cuprate high-Tc superconductors and in producing well characterized high quality materials. Nevertheless, the pairing mechanism itself remains controversial. We establish a criterion to test theories for layered superconductors relying on a substantial interlayer contribution. The cr...

متن کامل

A two-band model for the phase separation induced by the chemical mismatch pressure in different cuprate superconductors

A two-band model is used to study the phase separation in systems with different kinds of strongly correlated charge carrier, with a special emphasis on cuprate superconductors near optimum doping. We show that such a system can decompose into two metallic-like phases with more and less localized carriers. This phase separation is controlled by the energy splitting between the two bands. In cup...

متن کامل

Bose-Einstein to BCS Crossover Picture for High-Tc Cuprates

Combining (1) the universal correlations between Tc and ns/m ∗ (superconducting carrier density / effective mass) and (2) the pseudo-gap behavior in the underdoped region, we obtain a picture to describe superconductivity in cuprate systems in evolution from Bose-Einstein to BCS condensation. Overdoped and Zn-substituted cuprate systems show signatures of reduced superfluid density in a microsc...

متن کامل

Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling.

Nonlinear optical excitation of infrared active lattice vibrations has been shown to melt magnetic or orbital orders and to transform insulators into metals. In cuprates, this technique has been used to remove charge stripes and promote superconductivity, acting in a way opposite to static magnetic fields. Here, we show that excitation of large-amplitude apical oxygen distortions in the cuprate...

متن کامل

Interplay of D-wave Superconductivity and Antiferromagnetism in the Cuprate Superconductors: Phase Separation and the Pseudogap Phase Diagram

To understand the interplay of d-wave superconductivity and antiferromagnetism in the cuprates, we consider a two-dimensional extended Hubbard model with nearest neighbor attractive interaction. Free energy of the homogeneous (coexisting superconducting and antiferromagnetic) state calculated a s a function of the band filling shows a region of of phase separation. The phase separation caused b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016